Friday, February 3, 2023


Filter By

  • Clear All



Special Report and Whitepaper Library

Figure 1

Using high resolution 3D meshes for improved shape reconstuction of marine survey data


When using dense, high-precision survey data, the method for management and visualization of the data can have a large impact on the final decision making process. This is an important factor when accurate shape reconstruction is required, as there are significant trade-offs with traditional approaches. For applications where it is critical to know exactly the shape and size of surveyed objects, a high-resolution 3D mesh is likely the best option.

Figure 1

Catching the winds of change through automation, quality and comprehension


Hydrographic-based projects focusing on Offshore Wind Farms (OWF) pose unique challenges at every stage of the survey workflow. Acquisition requires integration of multiple sensor types, and project requirements often specify concurrent data collection posing installation, timing, and positioning challenges. Post-processing requires users to process, review, and if necessary, correct enormous multi-variant data sets. Surveyors continue to push for increased automation in these and other related processes. Furthermore, data fusion across these temporally and spatially variant data sets is critical for proper analysis in order to aid decision-making. Throughout the process, stakeholders need to communicate to each other, even if they have different backgrounds and/or project objectives. The question then is how can the surveyor best communicate with stakeholders, facilitate decisions, and then feed adjustments back into the survey workflow? The answers are found within the innovations of the QPS workflow brought about through the merger of complementary technologies both internal and external to the company itself. This working environment was created to be seamless throughout every stage of the project lifecycle. It is powerful enough to handle complex integrations and data acquisition, automated to reduce mistakes and yet simple at critical steps to provide familiarity and clear understanding for stakeholders. This paper introduces the common survey requirements throughout the various stages of an OWF lifecycle, and derives critical success factors necessary to meet them from real client case studies. Through automation, quality integration/acquisition, reductions in human error, and intuitive comprehension, the QPS workflow is uniquely designed to achieve these success factors. Regardless of a person’s background, QPS solutions are aligned to work together to enhance the capacity of all team members involved in a wind farm project by facilitating fluent workflows through all project stages.

Figure 1. Sample of the variation in coordinate frames found within any given hydrographic workflow

Innovative Hydrography; delivering a workflow for Acquisition, Processing, Visualization and Sharing for all modalities of today’s shallow water multibeam echosounders


Today’s shallow water multibeam echosounder are capable of efficiently delivering bathymetry, backscatter and water column data types. To benefit from this technology, Hydrographers are having to adjust their data collection and data processing workflows to deliver detailed and accurate information in an effective manner to a wider variety of End Users.


Introducing Teledyne Marine Multibeam Echosounder and Sonar Solutions


Teledyne Marine is a leading provider of advanced multibeam echosounder and sonar solutions servicing a variety of markets and applications. By delivering the most advanced acoustic technology solutions Teledyne Marine provides high resolution, accurate, dependable, long lasting solutions to our customers.

Marine Technology ENews subscription Marine Technology ENews is the subsea industry's largest circulation and most authoritative ENews Service, delivered to your Email three times per week
Subscribe for MTR E-news